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MOTION OF A FINITE RIGID STRIP IN AN ELASTIC
HALF-SPACE SUBJECTED TO BLAST WAVE LOADINGY

STEPHEN A. THAUZ

Illinois Institute of Technology, Chicago, Illinois

Abstract—An elastic half-space in which a thin rigid-smooth strip of length / is embedded just below and per-
pendicular to the surface is considered. The strip is subjected to planar, incident, compressional and shear waves
which are generated by a steadily moving pressure wave on the surface of the half-space. The ensuing rigid-body
translation and rotation of the strip are determined exactly during the time interval for a compressional wave to
traverse the length of the strip. However, the response of the strip, thereafter, appears to be predicted accurately
by the solution, based on results for a specific numerical example.

1. INTRODUCTION

STUDIES of elastic wave scattering by obstacles embedded in a half-space are of interest in
seismology, in the design of buried structures, and in the general area of dynamic stress
concentration about inclusions or cavities located near a boundary of a material. However,
such problems have been treated much less successfully than those involving obstacles in
an unbounded solid. The presence of the half-space boundary so complicates the scattered
wave motion, that analytical descriptions are usually impossible to obtain.

For the case of a rigid plate mounted on top of a half-space, some results are available.
Fredricks[1], Fredricks and Knopoff[2] and Gregory [3] have found solutions for scattering
of elastic waves by a semi-infinite, rigid-smooth overlay on the surface. Flitman [4] has
determined the motion of a finite, rigid-smooth plate mounted on a half-space and subjected
to impinging stress waves. His results are exact during the first time interval for a compres-
sional wave to traverse the length of the plate. Also, there is the related work of Karasudhi
et al. [5] on the radiation of waves in a half-space from a finite plate, vibrating on the
surface.

For a buried obstacle, there are a few studies on the radiation of stress waves from a
cylindrical and spherical cavity in a half-space [6-9]. However, the iteration solutions ob-
tained so far appear to be accurate only for deeply buried cavities.

This paper presents a two-dimensional study of elastic wave scattering by a rigid-smooth
strip embedded directly below and perpendicular to the boundary of a half-space (Fig. 1).
The half-space is subjected to a moving pressure wave, because such a loading represents
approximately an air blast wave produced by explosions, and also because it generates
planar compressional and shear waves incident upon the strip. These are easier to study than
the complicated non-planar waves produced by a stationary line load. Exact results are
obtained for the rigid-body response of the strip during the first time interval for a com-
pressional wave to traverse its length. The analytical method used is related to that
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employed by Flitman [4] and Kostrov [10], the latter of whom treated the scattering of
elastic waves by a finite strip in an unbounded medium.

The problem is first divided into diffraction and radiation portions according to the
procedure set forth in Ref. [11]. Then short-time solutions in each portion are constructed
from exact solutions of two semi-infinite strip problems, viz. the semi-infinite strip dividing
a half-space intc two quarter-spaces and the semi-infinite strip in an unbounded medium.
This approach is valid because the scattering of the waves at each edge of the strip occurs
independently until the scattered waves reach the opposite edges. For the diffraction prob-
lems, both semi-infinite strip solutions are known [12, 13]. These are briefly reviewed here
and the two new radiation solutions are derived. The results are combined to form the
equations of motion for the strip.

The paper concludes with an example of a normally incident compressional wave
with a rectangular pulse profile. Numerical results are shown for the transition and rotation
of the strip and these appear to be accurate beyond the initial time interval in which they
are exact. The peak responses occur, however, within the initial time period.

2. DESCRIPTION OF PROBLEM

The geometry for the problem (Fig. 1) consists of an isotropic, elastic half-space (y > 0)
in which a thin, rigid strip of length ! is embedded. The strip has smooth sides and its mass
center is located at distances a and b from its top and bottom edges, respectively. A state of
plane strain is assumed.

The loading consists of a pressure wave travelling along the surface of the half-space
with the constant superseismic velocity, ¢, . This wave originated at x = — o and it arrives
at the top edge of the strip at r = 0. It generates in the half-space the steady, planar com-
pressional (P) and planar shear (S) waves which propagate at the speeds ¢, and ¢,, respec-
tively. In terms of the shear modulus z, density p and Poisson’s ratio v, of the half-space.

¢y = Kep, ¢ = (p)t, Kk =[Q-)/1-2v)] (1)

and we assume ¢, > ¢, . Of course for real materials, ¢; > ¢,.

When the incident P and S waves strike the initially undisturbed strip, they are scattered.
Similarly the transient waves, generated to the right of the strip as the pressure wave propa-
gates past it, will be scattered. The problem is to compute the resultant wave fields in the
half-space. In particular we calculate the reactions on the strip, from which its rigid-body
response is evaluated according to Newton’s law of motion.
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Boundary conditions along the surface of the half-space specify an arbitrary pressure
wave,

T,,(%,0,1) = —plt—x/co), 1,4x,0,6)=0 2

where p = 0 when its argument is negative. Conditions at the smooth sides of the strip
specify that the surrounding medium remains in contact, i.e.

ux0, y, 1) = U(t) + (y— Q1)
'[xy(oa Y, t) =0

where U(f) and Q(t) are, respectively, the resultant rigid-body displacement in the x-
direction and rotation in the counter-clockwise sense about the mass center of the strip.
These are calculated from

} 0<y<l 3

mU(t) = f [0, 3, D)= 1,007, 3 1) dy
’ @)
1) = f (107, . )= 70007, 30 D) (7 —a) dy

in which m is the mass of a unit length of the strip normal to the plane of Fig. 1 and I is the
moment of inertia about the mass center of such a unit length of the strip. The right-hand
sides of equations (4) represent the total force and moment on the strip.

In addition to the above boundary conditions, in order to guarantee a unique solution,
we append the “‘edge conditions” that the displacements are finite at each edge of the strip,
y = 0, ], and the “‘radiation condition” that the scattered waves propagate away from the
strip.

To represent the P and S waves mathematically we use the wave potentials ¢(x, y, t) and
P(x, v, t) respectively. These satis{ly the equations of motion,

(€1V2—0%/0t%)p = 0, (3VE=2%/ot* W = 0 (5)
and are related to the displacements according to
u=Vo+Vxiye, )

where g_ is a unit vector in the z-direction. The stresses are determined from Hooke’s Law
as,

5 = pluy ;w5 + 208, /(1 2v)] (7

where Cartesian tensor notation is used in (7) with d,; being the Kronecker delta.

3. SEPARATION INTO DIFFRACTION AND RADIATION PROBLEMS

Mathematically, the problem is to determine the outgoing wave solutions of equations
(5) subject to the boundary conditions (2) and (3) and the edge conditions. The solution will
depend on the functions, U(t) and Q(t) which are then determined explicitly from equations
(4). A convenient scheme for accomplishing the analysis was formulated in [11] (and also
was used in [4] and [10]). It splits the scattered waves into waves diffracted by the strip
assumed to be immobile, and a second field of waves radiated into the half-space by the
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strip moving as a rigid body with amplitudes U(t) and Q(t). Thus, in our problem, with inci-
dent and scattered waves denoted with superscripts (i) and (s). respectively, the scattered
waves are split as

u® = g 4 a”, S e Y %)
The diffracted waves (d) satisfy the boundary conditions.

u? 4y - g ‘
onx =0, 0<y<] {91

i+ =0
indicating a rigid-smooth, immobile strip. The radiated waves (r) then must satisfy.

u? = Uty + (0 — a)di)

=0

Xy

ony =0 0<y=<i 10

where U and Q are arbitrary functions at this stage. The equations of motion which yield the
actual values of U and Q are derived upon substituting in equations (4) the total force and
moment on the strip in each of the separate problems for u” and u”’. The boundary condi-
tions along the surface of the half-space require that the tractions of the diffracted and
radiated fields vanish since the incident waves themselves are excited by the loading (2). 1.¢.
= ) = 0

¥y

riﬂ' = =l = X/C)h

W) e
Th = Ty = Tya = 0

Xy

ony = { (th

4. THE DIFFRACTION PROBLEM (I)

In the diffraction portion of the problem (I) we calculate the waves scattered by the rigid-
smooth strip assumed to be stationary. The incident waves on the left side of the strip are
described in Ref. [13] as

' = — 2B — DNp[t —(x +ay)cy] {12a}
= 2eaNplt —(x + By)co] {12by
where
o = clfet =1 pF = cgfes—1 7
(i

N =[(p* -1 +4ap] !

and each dot over the wave potentials, indicates differentiation with respect to time. On the
right side of the strip, the transient incident waves are rather complicated and it is easier to
treat the total field there. This is done subsequently. At this point we present the method for
constructing the exact solution for the diffraction problem during the first time interval for a
P wave to traverse the length of the strip, i.e. during 0 < ¢ < ljec,.
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1. Separation into two semi-infinite strip problems

Referring to Fig. 1 and the incident waves (12), we find that the incident P and S waves
reach the bottom edge of the strip at t = t, and t = t,, respectively, where

ty =allcg 20 (t, = 0whenc, = ¢g)
t, = Blicy > 0

The first diffracted waves (P waves) generated at the top edge of the strip do not reach the
bottom edge until t = f (= I/c,) and a straightforward calculation shows that ¢, <7 < t,.

Therefore, for 0 < ¢ < ¢, and x = 0,no waves have reached the bottom edge of the strip.
Consequently the solution is identical to that for an infinitely long strip which divides the
half-space into two quarter-spaces [see Fig. 2(a)]. To extend the solution into the interval
t; <t < i, we have to superimpose on the solution of the problem in Fig. 2(a), the solution
of the diffraction of the incident P-wave by a semi-infinite strip in an infinite solid [Fig. 2(b)].
Note that the waves diffracted at the bottom edge do not propagate to the half-space bound-
aryuntilt = (t; +H) > 1.

2. Solution for0 <t <t

Consider the problem in Fig. 2(a) of a half-space divided into two quarter-spaces by a
stationary, rigid-smooth wall and subjected to the moving pressure load. This problem
was solved in Ref. [13] and the total reactions on the wall were calculated. Here we list the
pertinent results in our problem with subscript 2a to refer to Fig. 2(a). However, in [13] the

[P

ACTUAL SURFACE
OF HALF SPACE

FiG. 2. Models_ for diffraf:tion portion of problem. (a) Semi-infinite strip in half-space: effects at
top edge and sides of strip. (b) Semi-infinite strip in unbounded medium : effects at bottom edge
of strip.
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wall is assumed to have a finite thickness so that the pressure wave takes ¢, units of time to
reach the right-hand quarter-space. Also in [13], the pressure wave has proiiles p,(f) and
pr(t) and velocities ¢; and ¢y over the left and righi-hand quarter-spaces, respectively.
Therefore, here we set ¢, = 0, ¢, = ¢cx = ¢y, and p, = pp = p. Also, we take a counter-
clockwise moment to be positive in this paper.
On the left side of the wall are two distinct occurrences. First, the incident P and S waves
are reflected as [13],
PR = —2(B2— DNt + (x — 2y)/co) {14a)

R0 = —2acgNplt +(x — By)jc,] (14b)

and secondly they are diffracted at the upper corner.t The total reactions on the left side (L)
of the wall are obtained from the formulas,

1 nl

Fi) = — f 1,07,y 0pdy. M) = - J 107, y, 0 (y—a)dy. (15)

0 0

In our notation, the reactions caused by the incident and reflected waves become,

FO L FRD = _2coa” IN(R?+ 1) (2> — B2+ ) p1)*1]; 0<t <1,

} .
Fo+FED = ~2cOoc‘N| (ﬁ2+1)<2a2~/32+1)f p(t—1)dt
o 0 (16a)
+4otzf p(l~t)dr—lJ: t, <t <ty
M@+ MED = 23y (B> — ) B* — DN —o®] [ p(t)*t]
—a(FY +FSHYy: 0 <t <1y
1
MO 4+ MR = 2ck(p)™? -’;[(/32 —a?) (B~ DN —a?] J‘ p(t—1)dr
) . 0 {16b)
--—4a3/$Nf p(t—1) dr} —a(F9 +FREY, 1 <<ty
and the reactions due to the diffracted waves are
F® = —2c3(mey)” "o L[ p(0)*¥1]: O <t {17a)
MP = [coc3(co+03) F=2e3(ney) 10T ] (p(ty*t] — aFP- 0 <1 {17b)
where

t,=alje,, 6, =1-Kk"7% & =1-2k7 x=c/jc,,

o= |18 e e e 4

Jo = j 22+ DIE + 1 HE +e3/ed)(E + DG de
4]

Q) = QE+1P -4 +r HE+ DI

+ In the left-hand quarter-space, we are splitting further the “diffracted” I\;vaves of equations (8) into planar
reflected waves (RF) and waves scattered at the corner (D), ie. u® = yRO L g®,
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and * denotes the convolution operation,
1

st = | fie-e0)dy.
0

The integrals I, and J,, are calculated in [13].

In the right-hand quarter-space it follows from [13] with t, = 0 and p; = p, that the
total stress field is identical to the negative of the stress field for the diffracted (D) waves
alone in the left-hand quarter-space. Hence, we may write the reactions on the right side
(R) of the wall from

Fya) = f l 707, 3,0 dy, MY = J: 70", y, ) (y—a)dy (18)
o]
as
FR) = FRXe), M) = MR (19)
The total reactions on the wall in Fig. 2(a) now become
Fo= FEHFSL My, = M3 +ME) (20)
where

P = FQ+ FED P, ME = MG+ MED+ MY
To calculate the total reactions in the diffraction problem, we must still consider the

scattering of the incident P-wave (12a) by the semi-infinite, rigid-smooth strip shown in
Fig. 2(b).

3. Additional solution for t, <t <1i

In Ref. [12], the problem of Fig. 2(b) is solved exactly for the case of a plane harmonic
incident P-wave with the time dependence exp(—imt). The wave potentials ¢ and y are
composed of the classical Sommerfeld solutions [14] for diffraction of a plane harmonic
wave by a half-nlane barrier, plus additional singular terms that are needed to render
the displacements finite at the edge. The Sommerfeld solutions occur because the boundary
conditions along a rigid-smooth strip, u, = 7,, = 0, can be expressed equivalently in
terms of the potentials as d¢/dx = Y = 0. In other words, the boundary conditions become
the same as those in the Sommerfeld problems. However, the potentials are coupled in
the edge conditions and this gives rise to the extra singular terms and distinguishes this
problem from those of Sommerfeld.

The solution in [12] is in parabolic coordinates and for a configuration that is rotated
90° from that in Fig. 2(b). Therefore, the solution is presented below for our geometry and
in the polar coordinates (r, 8) shown in Fig. 2(b). Also, we change —iw to s, which is the
Laplace transform parameter, and thus obtain the Laplace transform of the solution.
The Laplace transform of f(t) is defined as

Fis) = f “ e

The justification for this change is that the steady-state harmonic solution in [12] can be
interpreted as the Fourier transform of a transient problem with zero initial conditions
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and our transient problem in Fig. 2(b) has zero initial conditions.t In this case the two
transforms are related through w = is.
The results are

p(r, 0.s) = Ar > sin(30)e 7+ do(s)Wo(r, 0, 3. s)

- ‘ 2n
wh(r,0.5) = Ar ‘cos(i0)e
where s; = s/¢; (j = 0,1,2). ¢ols) is the Laplace transform of the incident wave (12a)
atx =y =0,

Pols) = — (7~ DINsg *plsie ™ {22
A= = 2i(s,m) 1 +x)] dgls) cos(Ly) 23

7 = cos” Yac,/c,) is the angle of incidence [see Fig. 2(b)j and W, is the Sommerfeld solution
(with —iw replaced by s) for an incident wave of unit magnitude and at angle = whose
normal derivative (8/00) vanishes on the strip (@ = +n). For later reference. we define
both W, and W, where W, is the analogous Sommerfeld solution which itself vanishes on
0= +n

X

W, 0,0, s) = n (e‘ -0 1 e Adi e sreestto) f e ds i (24
Ja- a’ |
witha + = (2s;)! sin %6+ 7). Equations (24) and hence (21) contain the sum of the incident
and diffracted waves. Note that ¢,(s) in equation (22) contains the “shifting”" factor
exp(—st,) since the initial time for the problem in Fig. 2(b)ist = ¢,.

Now, we can determine the reactions on the strip in Fig. 2(b). Recall, however, that the
incident wave (12a) and the plane reflected wave (14a) have already been considered in
the solution of the problem in Fig. 2(a). Therefore, we must subtract the reactions caused
by these waves from the reactions due to the solution (21). The details of calculation are
lengthy, but straightforward and the Laplace transform of the results is easily inverted.
The reactions are calculated from

!
oty = — f [golir, , ) — Tgolr, —m, £}] dr

Q

{

M, (t) = — J [Toolr, T, t) — Tgglr, —m, O] (b—r)dr
s

)]

where the subscript b refers to the problem in Fig. 2(b), and the net results due to the
waves diffracted at the edge alone are

Fyu(t) = 2cde; YB2— DN[23 K31+ k)™ ' cos(dy)—2 cos ;

(26a)
K314+ 2% cos3yn Y[ plt —1)*1]
M (1) = 2c5(B% — DHN[C2K) (4 — k¥ (1 +x) ! cos(%:») (26b)
+ i1 4272 cos(EyN(1 + 2% cos(Ay) 2 — 2] [plt —1,)¥t] +hE(1). -

t Zero “initial” conditions in the problem of Fig. 2(b) at t == 1,, when the incident wave reaches the bottom
edge of the strip. are required so that the combined solution of the problems in Fig. 2 is continuous at 1 == 1

1
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The sum of the above reactions with those for Fig. 2(a) [equations (20)] constitute the
total reactions on the strip in the diffraction portion of the original problem of Fig. 1
for0<t <t

Ft) = Fo(t) + F5(1), My(t) = M, (1) + My (1) (27)

5. THE RADIATION PROBLEM (1I)

In the radiation portion of the problem the original geometry of Fig. 1 is considered,
without any loading and incident waves. The strip is vibrating with amplitudes U(t)
and Q(r), yielding the boundary conditions

u0, y, 1) = U@+ (v —a)Qt)

0< y < / (28)

‘ng)(o, Vs t) =0

Along the boundary of the half-space,
Tg’r}}(x’ O’ t) = Tgy):(x’ 0, [) = 0 (29)

As in the diffraction problem, the solution of the radiation problem can be determined
during0 < t < i = I/c, by asuperposition of two semi-infinite, rigid-smooth strip solutions.
In the problem in Fig. 3(a), a semi-infinite strip translates and rotates about the point CM
according to equations (28) in an infinite medium. The solution, derived below, consists

Actual Surface of
Half - Space

—_— e —j— —— X

N
CM u(t)
i le
Ny

/
y

AL o

Ul Ty = O

!

Y

Fi1G. 3. Models for radiation portion of problem. (a) Semi-infinite strip in unbounded medium :
effects at bottom edge and sides of strip. (b) Semi-infinite strip in half-space: effects at top edge
of strip.
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of plane waves like U(r—x/c,) which are generated along the sides of the strip and
cylindrical waves which emanate from the edge. The latter, however, do not reach the
plane y = 0 until t = i. In Fig. 3(b), the half-space is divided into two quarier-spaces
by a stationary, rigid-smooth wall and is loaded by the negative of the tractions produced
on y = (O by the plane waves radiated in the problem of Fig. 3(a). Therefore. the sum of
the solutions for the problems in Fig. 3 is the radiation solution of the original problem
for6<i <t

1. Radiation solution for Fig. 3(a)

The boundary cenditions along the semi-infinite, rigid-smooth strip in FFig. 3(a) can
be written: in terms of the wave potentials in the polar coordinates as

0p(r, w120 = — V(1) +10)

v (30)
Y(r, +7.1) = 2e301)
where
o(t) = U()+DAt). (3N
The Laplace transforms of the above equations become
OP(r, +7,8)/00 = —rV(s)+r2Q(s
Plr, L1, 5)/ () (s) (32)

Plr, +m.s) = 20(s)/s3

where we have again used the zero initial conditions.

Now, the above boundary values (32} along the strip can be produced by introducing
the following plane waves (pw) in the field which propagate in the positive x-direction,
normal to the strip:

Pl 0:5) = (= V/s; +Qo/si00) e

_ _ . (33)
Y oulrs 0, 8) = (2Q/s3) e srend

where it is noted that the 0-derivative of a solution of the wave equation is itself a solution.
Having introduced these plane waves into the field we must now annihilate them where
they actually do not occur (which is everywhere except in /2 < ¢ < m) and yet not alter
the boundary conditions. This is done by taking the solution for the diffraction of the
negative of the above plane waves by the strip, held immobile, and adding it to equations
(33). Thus, consider the incident waves

5([) — (I—/,/Sl _ﬁa/sfag)e*s;rsinf)
lZ(i) — _(2Q/'S§)e--s;rsixxrf

(34

impinging on the semi-infinite, rigid-smooth, stationary strip which now has the boundary
conditions
dglr, £7) = Tp9lr, £1) =0 (35)
or equivalently
8¢/00 = =0 onf = +m (36)
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According to Section 4, sub-section 3, the solution for diffraction of the waves (34) is
expressed in terms of the Sommerfeld solutions W, , [equations (24)] plus singular, outgoing
wave terms. One may check that the results (c) in the entire field are

@1, 0,5) = Br Esin(0) e " +5; ' VW,(r, 0, 1/2, 5,)
—sTIOW,(r, 0, 772, 5,)/00 (37)
#(r,0,s) = Br*cos(30) e "5 — 255 2QW,(r, 0, /2, s,).

Note that since W, = 0 on 6 = +x, so does 0*W,/80% = r’siW, ~r?0>W,/or? —rdW,/or
and hence conditions (36) are indeed satisfied by the solution (37). The singuiar ierms in
cquations (37) are needed to render the displacements finite at the edge of the strip, r = 0.
It can be shown that the required value of B is

B = —[(s;m)¥1+x)] " [2s7 'V — (4t —xH)s; Q). (38)

The complete solution to the radiation problem of Fig. 3(a), indicated with subscripts
(3a) is given by the sum of equations (33) and (37), i.e.

$3a = apw+ (Zc; lp?m = Jpw +‘Zc' (39)

Substituting the solution (39) into equations analogous to those in (25), we perform the
lengthy, but straightforward, calculation of the Laplace transform of the reactions on
the strip and then invert the results to obtain,

(ur?) " Fyu(t) = —20e7 'U@) — (3 — ) (1 +5) "U@©) + e (1 —2b17 H00)
—B=r)(1+r) 6N+, [43 (1 + )] H(x* + 9% — 16K + 16K+ 32
— 323 [Q)*1] (40a)

(162) ™ IM (1) = 12e5 M1 — 261 YU (@) = B—1) (1 +1) 'bUH)
e [+ 1))~ (16 + 165+ 5K — 3163 — 32 [U(1)*1]
—213T 37 =B 4+ 521 200~ (B — 1) (1 4+ 1) 1h2) (40b)
e b[2K3(1+ )] H(16+ 161 — 326F +Tic — k) [Q(e)*1]
— [k (1+K)] 7 (i + S — 32k + 48k — 16) [Q(1)*1].

To complete the radiation solution, we must determine the reactions on the strip produced
in the problem of Fig. 3(b).

2. Radiation solution for Fig. 3(b)

As mentioned previously, the solution (39) for the problem of Fig. 3(a) decomposes
naturally into plane waves propagating in the positive and negative x-directions and
cylindrical waves which radiate from the edge of the strip. The latter do not strike the
boundary of the half-space during the time interval of interest. However, the plane waves,
which can be shown to be

¢ = —sgCNT+yQ)/s,e™ M, § = 20/ste M @1)
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mnx > 0and x < 0, produce the stresses on the boundary of the half-space, v = 0.

T,(x,0,5) = — psg(x)(x? —2)s, Te s/

- 3 — H . S R N ‘42)
T dx, 008) = 2pfe” ¥ g 2l
where T = U —aQ and sg(x) = + 1 forx > Qorx < 0, respectively. In deriving equations
{41) we used the relations

X=rsinf  y-l=rcost

from Fig. 3(a) to express the plane waves (33) in Cartesian coordinates.
The boundary tractions (42) are readily inverted to

T A0 = — ey Yt —2)se() T —|x)/¢y)

) < ‘ {43)
T A% 008y = 2u[QUe — [x|/e ) — Qe —ix}/e,)].
Since U and Q are zero when their arguments are negative it is seen that equations (43)
represent moving normal and shear loads over the boundary of the half-space, which
originate at x = t = 0. To cancel these boundary tractions and yet not alter the conditions
along the strip which have been satisfied by the pieceding solution, we must add to that
solution, the results in the half-space of Fig. 3(b) subjected to the negative of the loading (43).
By symmetry, it is seen that we need only consider the right-hand quarter space of Fig. 3(b)
as the reactions on the right and left sides of the wall will be equal.
The problem for the right-hand quarter-space of Fig. 3(b) is identified by the boundary
conditions,

1,{%,0,8) = pey P =2)T (e —xic))
10X, 0,8) = 2p[Qt — x/c,) — Ot — x/c¢y))

44)

and
u 0, y, 1) = 7, (0, v, 1) = 0. {45)

Now. as explained in {13], the quarter-space problem with a stationary, rigid-smooth
vertical boundary can be solved exactly by the method of images. If we consider a half-
space subjected to the loading (44) for x > 0, and the symmetric image of the normal load
and the anti-symmetric image of the shear load for x < 0, then conditions {45) along the
y-axis are satisfied identically and the solution in this half-space for x > 0 is equal to the
right-hand quarter-space solution in Fig. 3(b).

We omit the analysis for this half-space problem, which consists of applying the Laplace
transform in time and the Fourier transform in x to the governing equations and then
obtaining integral representations for the Laplace transform of the solution. Details for
solving dynamic half-space problems by this procedure are covered in Fung’s text {15].
In our problem, the integral representation for 7., along the rigid wall, x = 0, can be
integrated over y to yield the Laplace transforms of the reactions, which are easily inverted.
These steps are similar to those used in [13]. The results below have been doubled to
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account for the reactions on the left side of the wall in Fig. 3(b).

(@uk?) " Fyy(t) = (K2 =221 LU0 — aQ0)]+ ¢, (k> = D® =21

(46a)
—[4K3(c + D] Y — 1)(® +2x% — 4 — 4)} U (1)*1]
(4,LLK2)~ l1\/13,,(t) =, {(K2 -1) (K2 -21,— [2K3(K +1)]” 1 } {[U(t) —aQ(t)]*l} (46b)
—+—4(K2 — 1)213Cf[Q(t)*t] —(4;1162)_ laF3b(t)
where
I = n‘lfm(ézﬂ)‘%A(é)dé
0
I =7t f " e L+ DAE R AG) de
0
=7 f " EE + 1AE 4] AR) de
(1]
AQ) = {8+ 1) —4E2[(E2 + 1)(E + 1] 47

Substitution of £ = tan6 in I, , and ¢ = ktan @ in I, transforms the above integrals
into proper ones which can be evaluated numerically.
The final reactions in the radiation problem are the sum of equations (40) and (46), i.c.

Fy(t) = F3,(t)4 F3(t); My(t) = M3, (8)+ M 3(1). (43)

Note that the reactions from the radiation solution are independent of the incident wave
and so are the same for any loading. In fact, F;; and M|, are the restoring reactions on the
strip due to its “free vibration”. Having determined them, we can study the response of
the strip for other loadings by calculating only the new input reactions of the diffraction
solution.

6. DYNAMIC RESPONSE OF STRIP

The rigid-body response of the strip can now be determined by substitution of the
combined reactions, F{+ Fj;and M|+ M|, in equations (4). Two coupled, integro-differential
equations of the convolution type are obtained for U and Q. However, due to their length
in the general case, we illustrate these equations with a specific numerical example. First we
introduce the dimensionless time t = ¢,/l, dimensionless translation of the strip u(t) = U/I,
and dimensionless pressure wave profile Q(t) = p/u. Also, we define the dimensionless
reactions per unit depth of the strip in the z-direction as F/ulk?® and M/ul’x?.

In the numerical example, v = 1 so that ¥ = 3, a = b = /2 which means the mass
and geometric centers of the strip coincide, and ¢, = ¢, so that the pressure wave generates
only a compressional wave in the half-space which is normally incident on the strip, i.e.
v = n/2 in Fig. 2(b). For these choices, t; = 0 and 7 = ¢,#/l = 1. The dimensionless
equations of motion, with the reactions (II) written on the left-hand sides then become,

i + 21 +0-36u +0-29Q — (Q*0-09) = 20+ (0*0-36) (49a)
029u — (u*0-09) + 6€)/12 +Q/6 +0-09Q + [Q*(0-16 — 0-057)] = [Q*(0-29—0-097)]  (49b)
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where the decimal fractions are shown here only to two places and the dots now indicate
differentiation with respect to 7. The inertia parameter o is defined as

a = phipl {50}

with p,, h and [/ being the density, thickness and length of the strip, respectively, while p is
the density of the half-space medium. Although the analysis until now considered 4 to be
vanishingly small, we must assign, at this point, a finite value to ¢ in order that the strip
have a non-zero inertia. However, 4/ should be kept small so that the previous analysis
remains meaningful. Here, we choose #/l = 005 and ¢ = 0-24.

Equations (49), which can be solved by using Laplace transforms, for example, are
analogous in part to equations of motion for a coupled, two degree-of-freedom, discrete
vibration system. Dashpot and spring force terms occur on the left-hand sides, the former
because the radiated energy is absorbed by the surrounding semi-infinite medium and
the latter because the medium is elastic. In addition, however, memory-like, convelution
force terms appear which are generally absent in discrete networks. They occur in the
continuum case because of the waves emanating frem the edge of the strip. As these
propagate along the strip, they continuously alter its motion, which in turn continuousty
influences the wave forms of the subsequent waves radiated from the edges. In this way.
due to the wave propagation phenomenon, the reactions at time t depend in part on the
previous motion.

Although equations (49) are exact for 0 < t < 1, the question arises as to how accurate
the solutions become for T > 1. This question is discussed later, but for now we remark
that because of the term (—Q*0-057) in equation {49b) the solutions are unstable and
become exponentially unbounded as v — =o. Thus, the solutions may be approximately
valid for at most a finite period of time beyond v = 1.

To complete the numerical example, the profile of the pressure wave Q(r) is taken as
a finite rectangular pulse with unit area,

(5 for0<t<02

om = {0 for0-2 << b
whose duration time is less than one. The solutions then become
u(t) = Sluy(t) —ugr—02)]; Q) = 5[Qp(r) — Qu(r —-0-2)] (52)
where the responses to the unit step function uy and Q, are given by,
Uy(t) = 1—0-19¢ 038 —0.00019¢% 207+ 0-06e ~ "4 +0.07¢ ¢ S5
+¢7 9297006 cos(0-871) — 0-016 sin(0-871)]
Q1) = —0-13e™ 238 -0.004e® 207+ 0-262 = 7+ —0-19¢ S3b)

+e” 9297007 cos{0-871) + 0-20 sin(0-877)].

Note that the exponentially increasing term in each of equations (53) has a relatively
small coefficient so that its contribution is negligible until = becomes appreciably larger
than one.
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7. DISCUSSIONS OF NUMERICAL RESULTS AND CONCLUSIONS

The dynamic response of the strip, for the example cited [equations (52)] is presented
graphically in Figs. 4 and 5. Figures 4(a—c) show exact results vs. 7 in 0 < 7 < 1 for the
translation of the mass center of the strip, the translation velocity, and the rotation of
the strip about its mass center, respectively. The translation increases steadily from t = 0
to about 1 = 0-6 where it levels off to a normalized unit value. This is an expected result
because the normally incident P-wave (12a) produces the free field x-displacement

. 5t for0 <t <02
W00 =
1 for02 <1

(54)
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F1G. 4. Dynamic response of strip vs. dimensionless time 1 = ¢ 1/lin 0 < t < 1. {a) Translation of
mass center. (b) Translation velocity of mass center. (¢} Angle of rotation about mass center.

which is the unit function with an initial linear rise. Hence, the entire half-space, including
the strip is eventually displaced a unit amount in the x-direction. A similar result is reported
by Forrestal and Alzheimer {16] for the translation of a rigid cylinder in an unbounded
medium due to an incident compressional wave. However, in [16] the incident displacement
wave has a ramp function profile and so their curve for the velocity is comparable to our
displacement curve, while their acceleration graph is comparable to our velocity results.
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F1G. 5. Dynamic response of strip vs. dimensionless time 7 in 0 < ¢ < 20. (a) Translation of mass
center. (b) Translation velocity of mass center. (c) Angle of rotation about mass center.

The velocity of the strip, in Fig. 4(b), increases steadily until the time when the incident
rectangular stress pulse terminates and thereafter, the velocity decreases to zero. Qualita-
tively, this result compares favorably with the acceleration curves in Ref. [16].

The rotation of the strip, in Fig. 4(c), rises to a peak value of about 0-145 rad. at T = 0-55
and then begins to decrease. Interestingly, for the case of an incident stress wave with a step
function profile (not shown here) the rotation reaches its peak value at t = 1. These results
are not directly comparable to any others known to us. For example, in the cylinder
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problem of Ref. [16], no rotation occurs. In other plane strain finite strip problems, such as
those solved by Kostrov [10] and Flitman [4], no rotation occurs for a normally incident
P-wave, because of symmetry.

In order to study the results beyond the unit time period in which they are exaci.
we present in Figs. 5(a~c) corresponding plots vs. 7 for 0 < 7 < 20. We observe that
the results for the translation and translation velocity remain very close to their expected
values of one and zero, respectively, up to © = 20. In fact, it is not until 7 = 35 that the
exponentially increasing term in equation (33a) begins to contribute significant figures
and causes the results to diverge from their anticipated values. On the other hand. in
Fig. 5(c) we see that at about v = 10, the rotation angle starts to veer from what might be
an expected decaying oscillatory curve. This, too, is caused by the exponentially increasing
term with niegative sign in equation (53b).

In view of the foregoing. it appears that the exact solution derived here for 0 <t < |
will remain approximately valid well beyond 7 = |. The results in Figs. 5{a) and 5(b) agree
with the physically expected values over the entire time period shown and so it seems
reasonable to conclude that the rotation results in Fig. 5(c) are accurate, at least up 1o
about 1 = 8:0. Physically, it is not surprising that the results should remain valid for t > 1.
What our solution misses are effecis of the cylindrical waves generated at the top and
bottom edges of the strip after they are rescattered at the opposite edges. Moreover, it is
known that such cylindrical waves attenuate at a rate proportional to the inverse square
root of their distance of propagation [17]. Hence, we expect their effects will be less signifi-
cant during subsequent periods of traversal of the strip compared to those during the
initial traversal.

Finally, it is noted that our results extend to the physically anticipated “long-time
iimits”. The translation and translation velocity results reach their long-time limiting values
even before 1 = 1, and the rotation is only about —003 rad. at t = 10, which is close to
the expected limit of zero as 1 — o
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Abcrpakr—MHUccneayercs ynpyroe mojiynpoCTPascTBO, B KOTOPOM HAXOJMTCH TOHKasl, XECTKO-IJalakas
MOJI0Ca AJIMHBI / HECKOJIBKO HHXE M NEPICHIMKYIAPHO K e€ NOBEPXHOCTH. Fostoca noasepenHas aeltcTBIIO
IUTOCKHX, MAJAIOLINX BOJIH CXKATHA M CYBHUTA, KOTOPbIE BO3HHKAIOT BCIEACTBUE HOCTOSHHO ABMXKUIOLIEHCS
BOJIHBI AABJIEHUSA MO MOBEPXHOCTH MOJyHpocTpaHcTBa. ONpeneNsioTcs B SBHOM BHAE, TPAHC/ILUMSA KaK AJis
XKECTKOI'O TEIa U BPAllEHVE MTOJIOCEL, B MHTEPBAJIE BPEMEHM HEOOXOAWMBIM ISl TIEPEX0A BOJIHEL NABJICHHS
BIOJb JIMHBL MoJIockl. TeM He MeHee OKa3blBaeTcs, YTO BO3AEHCTBHE NOJOCHI COIJIACHO 3TOMY
SIBJISIETCA TMPEAYCMOTPEHHOE NOAPOOHO pelleHneM, OCHOBAHHBIM Ha pPe3ynbTaTaX OIS CHELMANBHOIO
YUCEHHOro NpuMepa.



